Chapter 3 Deterministic Single Stage Constant indigence Inventory Mangement 3.1 EOQ Extension Backorder all(prenominal)owed Assumptions: Same as EOQ. Shortage : award of ?/item/ unit time. Observe: 39 Cycle follow for a cycle of length T Cycle cost per unit time T C(Q, D) = ?T C(Q,D) ?S KD Q : K + CQ + hS + ?(Q?S) 2D 2D 2 2 : KD + CD + hS + ?(Q?S) Q 2Q 2Q 2 2 + CD + hS 2 2Q + ?(Q?S)2 2Q = hS ? ?(Q?S) = 0 Q Q ?hS = ?Q ? ?S ?Q ?S = h+? S ? ? Q = h+? (service level : proportion of demand met from stock) ? ? ? From EOQ, we get : Q = S? = 2KD h ? ? h+? ? 2KD h ? h+? What if ? ? ? ? What if ? = 0 ? 3.2 EOQ Extension Quantity Discounts All units can: Q < q : equal : K + C1 Q Q ? q : Cost : K + C2 Q with C2 ? C1 Incremental bank sack: Q < q : Cost : K + C1 Q Q ? q : Cost : K + C1 Q + C2 (Q ? q)+ with C2 ? C1 40 3.2.1 All units deductive reasoning T C1 (Q) = T C2 (Q) = ? Qc i = KD Q KD Q + + h1 Q 2 h2 Q 2 + C1 D + C1 D ? 2KD hi ? ? if Qc > q order Qc 2 2 ? if Qc 2 ?q andQc 1 ? q order { Qc if T C1 (Qc ) < T C2 (q) 1 1 q otherwise 41 3.2.2 Incremental discount { Cost : ? ? K + C1 Q if Q < q K + (C1 ? C2 )q + C2 Q = K ? + C2 Q if Q ? q Q1 = Q2 = 2KD h 2K ? D h and Q2 > Q1 because K ? = K + (C1 ? C2 )q ? K Method : 1. stand-in man the expressions derived for C(Q) in T C(Q) and determine the minimum encourage of Q alike to each price interval. 2. Determine which minima be realizable. par the value of the costs at the realizable EOQ values and separate the lowest. 3.3 3.3.1 triplex Products Coordinating Orders Power of Two Policies Suppose that we are social club multiple items and would like to coordinate orders. Power-oftwo (PoT) policies contend reorder intervals to be PoT of base period. Again, recall : T C(Q) = KD + Q hQ 2 = K T + hT D 2 = f (T ) 42 Let g = hD 2 ? ? f (T ) = K + gT ? ?T ? we get : T = K g ?.! ..If you expect to get a full essay, order it on our website: OrderEssay.net
If you want to get a full information about our service, visit our page: write my essay
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.